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Some basic concepts and earlier work on external noise and the convectively 
unstable Ginzburg-Landau equation are reviewed, and some of the ideas 
presented in the earlier work are investigated further and extended. In par- 
ticular, further consideration is given to convective chaos---chaos which only 
occurs in a moving frame of reference; and slugs--localized structures which are 
surrounded by a stable stationary state. Some new results on secondary convec- 
tive instabilities and on periodic systems with a spatially varying instability are 
discussed. Work on the coupled Ginzburg-Landau equation is reviewed. Actual 
physical systems are discussed. 
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1. I N T R O D U C T I O N  

Consider the stationary state of some spatially extended system and a small 
spatially localized perturbation about this state. If the perturbation grows 
with time at a given stationary point, the stationary state is absolutely 
unstable. However, if the perturbation travels such that the perturbation 
grows only in a moving frame of reference, eventually damping at any 
given stationary point, the stationary state is convectively unstableJ 1-8) 
Although this distinction is not often explicitly made, it is an important 
distinction since, in convectively unstable systems: (1) continuous external 
noise (or other continuous external perturbation) is necessary for an 
asymptotic state different from the stationary state--giving rise to a noise- 
sustained structure~ (2)the external noise is selectively and spatially 
amplified, forming spatially growing waves--this being a mechanism for 
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pattern selection(l"2); and (3) the external noise can play an important role 
in macroscopic dynamics such as spatiotemporal intermittency. (1'2'9) Since 
any system with nonzero group velocity will be convectively unstable 
sufficiently close to and above onset of the instability, ~1~ the behavior 
reviewed and studied in this paper is expected to be very common in 
nature. 

Since the equations describing a physical system may be very com- 
plicated and difficult to study, approximations are sometimes made to 
reduce the equations to a simpler set of equations. These equations will be 
more tractable for study while, it is hoped, preserving the essential features 
under study. One equation to which many physical systems can be reduced 
is the time-dependent generalized Ginzburg-Landau equation. r 15) This 
equation results from an expansion in some parameter (e.g., the Reynolds, 
Rayleigh, or Taylor number for a fluid system) near the critical value of 
{hat parameter. For example, Rayleigh-B6nard convection (fluid with a 
vertical temperature gradient), ~1) plane Poiseuille flow (fluid flowing 
between two parallel plates), (~3) and wind-induced water waves (14) can be 
reduced to the Ginzburg-Landau equation. Since the Ginzburg-Landau 
equation is a generic partial differential equation which exhibits much of 
the spatiotemporal phenomenon seen in actual physical systems, it is an 
ideal equation for study and will be used as a model equation for most of 
the studies here. Also, even though the Ginzburg-Landau equation is one 
dimensional, studies of this equation can provide insight and intuition 
about higher-dimensional systems and can suggest possible numerical or 
experimental studies of actual physical systems. 

In this paper I will review some basic concepts and some earlier work 
on the Ginzburg-Landau equation, as well as look in more detail at and 
extend some of the ideas presented in the earlier work. In particular, I will 
look in more detail at convective chaos---chaos which only occurs in a 
moving frame of reference (see Section 4); and slugs--localized structures 
which are surrounded by a stable stationary state (see Section 5). I will also 
look at some new results on secondary convective instabilities and on 
periodic systems with a spatially varying instability. I will then review work 
on the coupled Ginzburg-Landau equation. (1~ Throughout and toward 
the end of this paper I will discuss actual physical systems. 

2. THE G I N Z B U R G - L A N D A U  EQUATION 

The Ginzburg-Landau equation is 

a-~ -a-Zx ~ - c1r ~ (i) 
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where the dependent variable O(x, t) is in general complex, the coefficients 
a, b, and c are in general complex, br > 0, and v e is the group velocity (of 
the most unstable mode). Real and imaginary parts will be denoted by the 
subscripts r and i, respectively, or by Re and Ira, respectively. The variable 

is related to the actual system by being the slowly varying amplitude of a 
plane wave about the stationary state of the system. If ar is positive, a small 
perturbation will grow with time. In addition, if jVgl is sufficiently large (see 
Section 3), the perturbation will be convected out of any given region and 
the system will be convectively unstable. If cr is positive, the perturbation 
will eventually saturate and produce some pattern. 

To give the reader a better indication of the relation of ~ to the actual 
variable in a physical system, I note that for two-dimensional plane 
Poiseuille flow (flow between two parallel planes) the stream function ~ to 
first order in e = (R  - R c )  1/2 (where R is the Reynolds number and Rc is the 
critical Reynolds number) is (13) 

r y, t) = y - y3/3 + 2e Rel-ff(Z, z) ~b(y) e '(k . . . . . .  ')] (2) 

Here x and y are the spatial coordinates parallel and perpendicular to the 
planes, respectively; Z = ex and z = e2t are slowly varying space and time 
variables; k c and coc are the wavenumber and frequency corresponding to 
the critical Reynolds number R c; y -  y3/3 is the unperturbed laminar state 
which corresponds to a parabolic velocity profile; and ~b(y) is the eigen- 
function of the most unstable mode for the Orr-Sommerfeld equation, 
which is the linear stability equation for fluid flow. In Eq. (1) (with x and t 
replaced by )~ and z, respectively) a and c are of order e z, and Vg and b are 
of order eo. The velocity components parallel and perpendicular to the 
planes, respectively, are u = - O ~ / ~ y  and v =  Or Since O(Z, z) is the 
slowly varying amplitude of a plane wave, Eq. (1) is often referred to as an 
amplitude equation. 

3. CONVECTIVE INSTABILITY AND 
NOISE-SUSTAINED STRUCTURE 

Consider a small, spatially localized perturbation about the stationary 
state of some spatially extended system. Figure 1 shows three distinct types 
of behavior that the small localized perturbation can undergo. If the state is 
absolutely stable, the perturbation will be damped in any frame of 
reference. If the state is absolutely unstable, the edges of the perturbation 
will move in opposite directions and therefore the perturbation will grow at 
any given stationary point. If the state is convectively unstable, the edges of 
the perturbation will move in the same direction and therefore the pertur- 
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Fig. 1. Illustration of three types of behavior for a perturbation. The convectively unstable 
case results in the amplification of noise. Reprinted from ref. 2. 

bation will grow only in a moving frame of reference, eventually damping 
at any given stationary point. 

In the absolutely unstable case, the perturbation will grow and 
saturate (because of nonlinearities), producing in the asymptotic time limit 
some pattern (which may be changing with time). Therefore, a single per- 
turbation produces a pattern for all time. In contrast, in the convectively 
unstable case, the perturbation and resulting pattern will move spatially 
such that the pattern eventually leaves the boundaries of the system. 
Therefore, a single perturbation produces only a temporary pattern and in 
the asymptotic time limit the system returns to the stationary state. In 
order to have a permanent pattern in a convectively unstable system, it is 
therefore necessary to continuously perturb the system. If the system is con- 
tinuously perturbed by external noise, we refer to the resulting pattern as a 
noise-sustained structure and the corresponding state as a noise-sustained 
state. ~'2) In general the noise will be selectively amplified by the dynamics 
(i.e., some wavenumbers will be more amplified than others). This will give 
rise to spatially growing waves and will be responsible for the selection of 
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the wavelength of any regular pattern that may form. Since the noise will 
be amplified exponentially, the natural noise inherent in a physical system 
should in many cases be sufficient to produce a noise-sustained structure. 

To make these ideas more concrete, let us now consider the Ginzburg- 
Landau equation (1). The state ~ = 0  of Eq. (1) may be shown (~'2) to be 
absolutely stable if 

absolutely unstable if 

and convectively unstable if 

G < O  (3) 

v~gbr 
a~ ~ i-~-~>0 (4) 

v~b~ 
a~ ,~-]~ < 0 and G > O  (5) 

Figure 2 shows qJr(x, t) plotted as a function of x at five different times 
for a set of parameter values in the convectively unstable regime. A low 
level of noise is introduced at the left boundary by letting @r(0, t) and 
~i(0, t) equal random numbers uniformly distributed between - r  and r. 
The initial conditions were @(x, 0) = 0. The boundary condition at the right 
boundary is d2O/dx2= 0 to simulate an open boundary. For the numerical 
method see refs. 1 and 2. Figure 2a is at an early time and shows the 
structure in the process of formation. Figures 2b-2d show the structure at 
large times after the system has reached a statistically steady state. External 
noise at the left boundary is selectively and spatially amplified, giving rise 
to spatially growing waves. When the amplitude of the wave becomes 
sufficiently large, the waves saturate, producing the structure (i.e., pattern). 
The selective and spatial amplification of the noise is the pattern selection 
mechanism responsible for the sinusoidal portion of the structure. Because 
the sinusoidal structure is itself convectively unstable (i.e., a secondary 
convective instability), it breaks up at some spatial point, producing an 
irregular structure, Since there are irregularities in the spatially growing 
waves that change with time, the point at which the structure breaks up 
changes with time (compare Figs. 2b, 2c, and 2d), resulting in random 
spatiotemporal intermittency. 

At t =  116 the noise is removed. Figure 2e shows the structure at 
t = 300. We see that the structure moves out through the right boundary. 
As t increases further, the structure will continue moving to the right until 
the state returns to ~b = 0  everywhere. Therefore, the structure seen in 
Figs. 2b-2d is indeed a noise-sustained structure. 
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Fig. 2. Plot of #G as a function of x at (a) t = 2 0 ,  (b) t =  100, (c) t :  115, (d) t =  llO, and 
(e) t = 300. The parameter values in Eq. (1) were a = 2, vg = 5.2, b r = 1.8, bi = - l, cr = 0.5, and 
c i=  1. The initial condition was 0(x, 0 ) = 0  and the noise level at the left boundary was 
r =  10 7. At t = 116 the noise was removed. The external noise at the left boundary is selec- 
tively and spatially amplified, resulting in the observed pattern (panels b~t).  Spatiotemporal 
intermittency is observed. Without  the noise (panel e) the pattern moves out through the right 
boundary.  
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Fig. 2 (continued) 

Since eigenvalues are often used to calculate whether or not the 
stationary state of a system is unstable, a few words should be mentioned 
about this method for the calculation of stability with regard to convective 
instability. If one calculates the eigenvalues of the linearized equation with 
the given set of boundary conditions for a convectively unstable state, one 
will find that the most unstable eigenvalue (i.e., 2g) has a real part that is 
negative. This is so since a perturbation will be convected out of the system 
and the system will return to the stationary state. For example, the most 
unstable eigenvalue of the linearized equation (1) with boundary con- 
ditions r = 0 at x = 0 and x = L, where L is the length of the system, is 
2g = a - v 2 / ( 4 b )  - rc2b/L  2. For L 2 ~> rc2br, Re[2~] < 0 is then equivalent to 
the first part of Eq. (5). Therefore, if the real part of the eigenvalue is 
negative, the state may be either absolutely stable or convectively unstable, 
and another test will be needed to distinguish between these two alter- 
natives. One method is to then calculate the most unstable eigenvalue with 
periodic boundary conditions imposed instead (i.e., 2p). (1'2) Fo r  example, 
the most unstable eigenvalue of the linearized equation (1) with periodic 
boundary conditions is 2p = a, and Re[)~p] > 0 is equivalent to the second 
part of Eq. (5). Therefore, if the real part of the most unstable eigenvalue 
with the given set of boundary conditions is negative (i.e., ,~g < 0), and the 
real part of the most unstable eigenvalue with periodic boundary con- 
ditions imposed instead is positive (i.e.,)~p > 0), the state will be convec- 
tively unstable. This follows from the fact that a perturbation which would 
have otherwise traveled out of the system with the given set of boundary 
conditions will be fed back into the system if periodic boundary conditions 
are imposed instead. If )~g > 0, the state will be absolutely unstable. If 
2p < 0, the state will be absolutely stable. 

Even though the equations describing a system may be Galilean 
invariant, the equations p l u s  boundaries (assuming the boundaries are not 
periodic) will not be. Therefore, the above effect is not something that can 
be transformed away. Also, because of boundaries there is a preferred 
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frame of reference. For example, in fluid flow over a flat plate (16) the 
preferred frame of reference is that in which the plate is at rest. Pertur- 
bations near the leading edge of the plate will be amplified as they are con- 
vected over the surface of the plate. It may also happen that the preferred 
frame of reference is not the laboratory frame of reference. For example, if 
a plate were being towed through some fluid, the preferred frame of 
reference would be that in which the plate is at rest. Another example is 
side branching in a dendrite (see Section9). The preferred frame of 
reference is that in which the tip of the dendrite is at rest, since it is the 
perturbations at the tip that are being amplified as they are convected 
along the sides of the dendrite (relative to the tip). 

Also, the above effect is very different from that occurring in an initial 
value problem, where some initial noise in a system is amplified, giving rise 
to some pattern. To reiterate, in a convectively unstable system, continuous 
external noise is selectively and spatially amplified as it is convected along, 
giving rise to spatially growing waves. Therefore, the formation of the 
spatially growing waves is dependent on the constant flux of new infor- 
mation and is not something that can be described by an initial value 
problem. That is not to say that there is no behavior in a convectively 
unstable system that can be described by an initial value problem. For 
example, if the system is given an initial spatially localized perturbation, 
one can consider a finite region which contains the perturbation and allow 
this region to move with the perturbation. In this case, the behavior will be 
described quite well by an initial value problem as long as the perturbation 
stays confined to the region under consideration and until the region hits 
the boundary of the system. 

An interesting point to consider is that of prediction in convectively 
unstable systems. The situation is much worse than the problems discussed 
by Lorenz concerning deterministic chaos/17~ For, in a convectively 
unstable system prediction for even short times is not possible, unless the 
microscopic noise is known. For example, prediction of the spatiotemporal 
intermittency seen in Figs. 2c and 2d is not possible unless the microscopic 
external noise at the left boundary is known. Another example is fluid flow 
over a flat plate. (16) Small-scale fluctuations near the leading edge of the 
plate are amplified as they are convected over the surface of the plate. 
Further downstream turbulent spots form randomly in space and time. 
Unless the fluctuations near the leading edge are known, prediction of the 
occurrence of the turbulent spots is not possible. 

As noted in the introduction, any system with nonzero group velocity 
will be convectively unstable sufficiently close to and above onset of the 
instability/1~ This may be seen by noting that, slightly above onset of the 
instability, the velocities of both edges of the perturbation will have the 
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Fig. 3. Plot of the growth rate of a perturbation as a function of the frame of reference from 
which the perturbation is observed when the system is slightly above onset. Since the velocity 
of both edges of the perturbation is the same sign, the system is convectively unstable. 

same sign as the group velocity (since the group velocity is nonzero). This 
is illustrated in Fig. 3, which shows the growth rate of a perturbation as a 
function of the velocity of the frame of reference from which the pertur- 
bation is observed when the system is slightly above onset. Since the 
velocities of both edges of the perturbation have the same sign, the pertur- 
bation will be convected out of any given region. The velocities of the edges 
are given by those velocities for which the growth rate is zero, and the 
group velocity is given by that velocity for which the growth rate is 
maximum/8) By group velocity in the above we mean the group velocity of 
the most unstable mode, since this will be the velocity at which a pertur- 
bation will grow most rapidly in the asymptotic time limit and since this 
velocity will correspond to "moving with the perturbation." 

Also, the above observation may be seen (although less generally) by 
referring to Eq. (5): If vg is nonzero and if ar is only slightly positive, 
Eq. (5) will be satisfied and the system will be convectively unstable. At this 
point it may also be worth mentioning that by slightly above onset I mean 
slightly above onset for the actual physical system and not for the 
corresponding Ginzburg-Landau equation. For, because of boundary 
effects, the point of onset for the actual physical system may be slightly 
different from the point of onset for the corresponding Ginzburg-Landau 
equation. 

As the control parameter is changed further from its critical value, it 
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may also happen in some systems that the system will make a transition 
from convectively unstable to absolutely unstable. In other systems, such as 
plane Poiseuille flow, the system is convectively unstable for all values of 
the control parameter (which is the Reynolds number for plane Poiseuille 
flow) for which the system is unstable. (8) 

4. CONVECTIVE CHAOS 

Chaos is characterized by the exponential average separation of 
nearby states. However, since perturbations can grow or decay depending 
on the frame of reference, the divergence or convergence of nearby states 
can also depend on the frame of reference, meaning that the usual concept 
of chaos needs to be modified when considering spatially extended systems 
with nonzero group velocity. Just as we perturbed about the stationary 
state of a system to determine whether the state were absolutely or convec- 
tively unstable, we can also perturb about the general irregular (e.g., 
turbulent) state of a system to determine whether the state is absolutely or 
convectively chaotic. (2'18) Consider the general irregular state of some 
system and a small, spatially localized perturbation about this state. If the 
perturbation grows exponentially on the average at a given stationary 
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Fig. 4. Plot of ~r  as a function of x after the system has reached a statistically steady state at 
two different times separated by t = 10. The parameter  values in Eq. (1) are the same as those 
in Fig. 2, except for br = 1. 
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point, we will define the state as being absolutely chaotic. However, if the 
perturbation grows exponentially on the average only in a moving frame of 
reference, eventually damping at any given stationary point, we will define 
the state as being convectively chaotic. If the perturbation does not grow 
exponentially on the average in any frame of reference, the state is not 
chaotic. 

The next question is how to define a measure for convective chaos. 
For, if we naively calculate the usual largest Lyapunov exponent for a con- 
vectively chaotic flow, we will find that the exponent is negative. This is so 
since perturbations about the convectively chaotic state are convected out 
of the system, causing nearby states to converge exponentially on the 
average in the asymptotic time limit. For example, in the Ginzburg- 
Landau equation (1), if we consider an infinitesimal perturbation 6r t) 
about the convectively chaotic state r t), the perturbation will be con- 
vected out of the system, causing the states ~(x, t) and r t)+ 6r t) to 
converge exponentially on the average in the asymptotic time limit, giving 
a negative value for the largest Lyapunov exponent. The largest Lyapunov 
exponent being negative for a convectively chaotic flow is similar to the 
real part of the most unstable eigenvalue being negative for a convectively 
unstable state. 

These ideas will become clearer by again considering the Ginzburg- 
Landau equation and referring to Fig. 5, which shows the evolution of an 
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Fig. 5. Plot of an infinitesimal perturbation 6r about the states seen in Fig. 4. The pertur- 

bation is convected to the right as it grows, demonstrating convective chaos. 
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infinitesimal, spatially localized perturbation 6O(x, t) about the state 
r t) shown in Fig. 4, 6~k being determined by solving the linear equation 

vg-- x +b--gTx  - 2 c  * (6) 

along with Eq. (1). We see that the perturbation is convected to the right as 
it grows, demonstrating convective chaos. For sufficiently large times, the 
perturbation will be convected out through the right boundary, leaving 
only its trailing left edge, which will decrease exponentially with time. Note 
that the absolute vertical scale in Fig. 5 is irrelevant, since one is solving a 
linear equation (i.e., one may multiply the vertical scale by any constant). 

These ideas may also be demonstrated by plotting the logarithm of the 
separation between the two nearby states as a function of time, where the 
separation is given by 

~(t) = ( fo L I&C,(x, t)l 2 dx) '/2 (7) 

where L corresponds to the length of the system. Referring to Fig. 6, we see 
that initially the states separate corresponding to the growing perturbation 
seen in Fig. 5. However, for larger times the perturbation moves out 
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Fig. 6. Separat ion between two nearby states given by Eq. (7). The states initially separate 
corresponding to the growing per turbat ion seen in Fig. 5. The per turbat ions  in Figs. 5a and 5b 
correspond to t = 10 and t ~ 20, respectively. After t = 32 the states converge, corresponding to 
the per turbat ion being convected out  through the right boundary.  
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through the right boundary, leaving only its damping trailing edge, 
corresponding to the convergence of the states. Again note that the 
absolute vertical scale is irrelevant, since one is solving a linear equation 
(i.e., any constant may be added to the vertical scale). 

In order to define a measure for convective chaos, it is necessary to 
take some finite spatial region (2 of the flow and allow this region to move 
at some velocity v. Instead of calculating the Lyapunov exponent for the 
entire system, we can then calculate the exponent for the moving region 
f2(v) giving the Lyapunov exponent 2(O(v)). Let vm be that v which gives 
the largest value for 2(O(v)). If ,,~((2(Vm) ) > 0, we then say that the flow is 
chaotic in the region O(v,,) and that 2(f2(vm)) is a measure of that chaos. 

For example, for the Ginzburg-Landau equation (1), we can take the 
region (2(v) as the region extending from x l  + vt to x2 + vt, i.e., the region 
{Xl +vt ,  x 2 +  vt}. Consider the initial perturbation 6O(x, 0) spatially 
localized in the region {xl, x2}. The subsequent evolution of this pertur- 
bation will be given by Eq. (6), where ~,(x, t) is given by Eq. (1). We define 
the largest velocity-dependent Lyapunov exponent as (18~ 

where 

2(v; x l ,  x2) = lim -1 In ~(v, x l ,  x2, t) (8) 
, ~  t ~(v, x~, x2, 0) 

(_! x2+vt 2 dx) 1/2 (9) 
~(v, x l ,  x2, t) = \-~i + ~, 16r t)l 

Let /)m be that v which gives the maximum value for ,~(V, X1, X2). If 
2(vm; xl,  x2)>  0, we say that the system is chaotic in the region {Xl + vmt, 
x2 + v,, t } and that 2(v,~ ; xl ,  x2) is a measure of that chaos. If v = 0 and if xl 
and x2 correspond to the boundaries of the system, this definition reduces 
to the definition of the usual largest Lyapunov exponent. For v > 0  the 
system must be extended to infinity in the positive x direction, for 
otherwise the region {xl +vt ,  x 2 +  vt} will hit the boundary. In practice, 
the system must be long enough for reasonable convergence. Also, if 
X z - X l  is sufficiently large, the largest velocity-dependent Lyapunov 
exponent will in most cases be independent of xl and x2, giving 2(v) for the 
exponent. 

Since experimentalists often calculate Lyapunov exponents from the 
reconstruction of a single time series, an important question is whether or 
not velocity-dependent Lyapunov exponents can be calculated from single 
time series. In the stationary frame of reference (i.e., v = 0) it is clear that a 
reconstruction of a single time series will not give a reasonable value for 
the largest exponent for a coinvectively chaotic flow. For example, the 
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exponent from a time series taken at a stationary point in the irregular 
portion of the structure in Fig. 4 will be positive since the time series is 
aperiodic, even though 2(v = 0) is negative. This reflects the fact that there 
is a constant flux of new information to the right originating from the noise 
at the left boundary. However, in a comoving frame of reference this will 
no longer be a problem and the exponent from a time-series reconstruction 
taken at a point that is moving with the flow [e.g., moving at v 3 for 
Eq. (1)] should give a reasonable value for the maximal largest velocity- 
dependent Lyapunov exponent. (18) 

For many systems it would be impractical to calculate numerically the 
largest velocity-dependent Lyapunov exponent, since the system would 
need to be very long in order to get reasonable convergence. To give a 
criterion which may be easier to calculate for some systems we can 
generalize the idea of calculating the eigenvalues both for the given set of 
boundary conditions and for periodic boundary conditions imposed 
instead to determine whether a stationary state is convectively unstable. 
Consider the irregular state of some system. Let 2 3 be the largest Lyapunov 
exponent for the given set of boundary conditions, and )~p be the largest 
Lyapunov exponent for periodic boundary conditions imposed instead. If 
)~3 < 0 and 2p > 0, we can say that the state is convectively chaotic and that 
2p is a measure of that chaos. (2) If 2 g > 0  , the state will be absolutely 
chaotic. If )~p <~ 0, the state will not be chaotic. 

5. SLUGS 

Consider the stationary state of some system and a finite, spatially 
localized perturbation about this state. Assume that the stationary state of 
this system is subcritical, meaning that only a perturbation of sufficient 
amplitude will grow, whereas a perturbation of smaller amplitude will 
damp. Therefore, if the perturbation is sufficiently large, it will grow and 
eventually saturate as a result of nonlinearities, producing a localized struc- 
ture which will be surrounded by the stable stationary state. Note that part 
of the structure may also be in contact with boundaries. This structure may 
be regular or irregular, may or may not be traveling, and may or may not 
be spreading. This localized structure is called a slug (9'10'19 21) and therefore 
I define a slug as a localized structure which is surrounded by a stable 
stationary state. By stable ! mean stable to sufficiently small perturbations. 

To make this concept more concrete, Fig. 7 shows a turbulent slug in 
plane Poiseuille flow (fluid flowing between two parallel plates), looking 
down on (i.e., perpendicular to) the plates. This slug is surrounded by 
stable laminar fluid and slowly spreads as it travels downstream. It was 
initially produced by giving the laminar state a sufficiently large pertur- 
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Fig. 7. Turbulent slug in plane Poiseuille flow (fluid flowing between two parallel planes). 
The slug is surrounded by stable laminar fluid and slowly spreads as it is convected 
downstream. Reprinted from ref. 20. 

bation~ If one looks from the side (i.e., parallel to the plates), the slug 
would be seen to be confined in the perpendicular direction by the plates. 

Slugs also occur in the following generalization to Eq. (1)(9): 

~ t  = at~ -- v g 8~p 820  2 (lo) 

The only difference between this equation and Eq. (1) is the addition of the 
quintic term. This term is necessary in order to ensure saturation when 
cr < 0. For slugs to exist we need ar < 0 so that sufficiently small pertur- 
bations will damp, c r < 0 so that sufficiently large perturbations will grow, 
and dr > 0 so that the perturbation will saturate and form a slug. 

Figure 8 shows a slug in Eq. (10) at successive times separated by 
t = 20. The boundary conditions are periodic and Vg = 0. The initial state is 
that shown in Fig. 8a. A small random initial perturbation is superimposed 
on this initial state in order to break any symmetries--without this random 
perturbation the slug would stay symmetric about x = L/2,  even though the 
slug may be changing chaotically with time. On either side of the slug the 
solution is stable (i.e., stable to sufficiently small perturbations) since ar < 0. 
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Fig, 8. Turbulent slug in the generalized Ginzburg-Landau equation (10) at times separated 
by t=20. The parameter values are a = - 0 . 1 ,  r e=0  , br=0.4, hi=--1, c r = - 2 ,  c~=l, 
d, = 0.5, and d i = 1. The initial condition was that seen in Fig. 8a. The slug slowly spreads and 
changes in a chaotic fashion with time. 
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We see that the slug spreads slowly and changes in a chaotic fashion with 
time. 

In order to see that the slug is indeed chaotic, Fig. 9 shows a plot of 
the logarithm of the separation between two nearby states as a function of 
time. The separation is given by Eq. (7), where 6~, was calculated by 
solving the linear equation 

~ ~ + b ~ -  2c t~1 ~ 6~ - cr162 * 

(11) 
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Fig. 9. Separation between two nearby states given by Eq. (7) for the slug seen in Fig. 8, 
where &k is given by Eq. (I1). The slug seen in Figs. 8b-8e correspond to t = 0, 20, 40, and 60, 
respectively. The states separate exponentially, showing that the slug is chaotic. 
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along with Eq. (10). Note that the absolute vertical scale is irrelevant since 
one is solving a linear equation (i.e., one may add any constant to the ver- 
tical scale). Also note that plotting the logarithm of the separation (22) is an 
efficient way to calculate the largest Lyapunov exponent, since typically 
one does not need as long of a time series as in directly using the definition, 
and also renormalization is not necessary if one is solving for the pertur- 
bation from the linearized equation [e.g., Eq. (11)], since the amplitude 
of the perturbation can change many orders of magnitude before the 
computer overflows (approximately 1000 orders of magnitude for a Cray 
computer). Another advantage is that the degree of chaos may be slowly 
changing for some systems (corresponding to a change in the average slope 
of the curve) which would not be observed if one were to apply directly the 
definition. 

for incompressible fluid flow, the Navier Stokes For example, 
equations are (3) 

+ (u" V)u - vWu = - V p  + f 

and the continuity equation is 

(12) 

V ' u = 0  (13) 

where u(x, t) is the velocity field of the fluid, p(x, t) is the kinematic 
pressure (i.e., the pressure divided by the density), f(x, t) is an external 
force field (e.g., gravity), and v is the kinematic viscosity. Let 6u and 6p be 
infinitesimal perturbations about u and p, respectively. These perturbations 
will satisfy 

(14) 

and 

u +  (6u " V ) u +  (u "V) 6 u - v W  6 u =  -V6p  

V ' 6 u = 0  

The separation between two nearby states is 

~(t) = ~u" ~u dx 

(15) 

16) 

where f2 corresponds to the region over which the separation is being 
measured, which in many cases corresponds to the entire system. If the 
system is inhomogeneous with different regions of the flow exhibiting dif- 
ferent degrees of chaos, it may be desirable to let s be a subset of the 
system over which the degree of chaos is being measured. Also, for systems 
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with a mean flow velocity it is possible--and, as previously noted, 
necessary for systems without periodic boundary conditions--to let the 
region f2 move with the flow. In this way, the degree of chaos for some 
moving localized structure such as a slug could be measured. The 
separation ~ from Eq. (16) can be calculated and plotted as a function of 
time by solving the linear equations (14) and (15) along with Eqs. (12) and 
(13). The average slope will then give the Lyapunov exponent. 

Since a slug is a structure which forms subcritically, a question which 
arises is how slugs form naturally in open-flow systems such as pipe flow 
and channel flow. One explanation is that, even though the flow may be 
subcritical sufficiently far downstream (in fact, fully developed laminar 
cylindrical pipe flow is linearly absolutely stable for all Reynolds numbers), 
the flow may be convectively unstable in the inlet region where the flow is 
not yet fully developed. (9'23'24) For example, the velocity profile in cylin- 
drical pipe flow and plane channel flow changes gradually from essentially 
flat to parabolic as the distance from the entrance to the pipe or channel 
increases. Even though the fully developed flow is stable, a portion of the 
developing flow may be unstable. 

Therefore, the following scenario for turbulent slug production and 
spatiotemporal intermittency in pipe and channel flow was suggested in 
ref. 9, where Eq. (10) was studied with a varying value for the coefficient a 
(at being positive in the left region to simulate a convectively unstable inlet 
region, and ar and cr being negative in the right region to simulate a sub- 
critical region). External fluctuations are selectively and spatially amplified 
in the inlet region, giving rise to spatially growing waves. Since the source 
of the spatially growing waves is random noise, there will be random 
variations in the amplitude of the spatially growing waves. Further 
downstream the system is subcritical with two basins of attraction--a 
laminar basin and a turbulent basin. If a portion of the wave becomes suf- 
ficiently large in the inlet region, it will grow into a slug in the subcritical 
region further downstream (i.e., settle into the turbulent basin); if it does 
not become sufficiently large in the inlet region, it will damp and form a 
laminar region (i.e., settle into the laminar basin). The result will be alter- 
nating regions of laminar and turbulent flow. Since the variation in 
amplitude of the spatially growing waves is random, the slugs will form 
at random intervals in time--resulting in random spatiotemporal inter- 
mittency. 

It is also possible to have a slug that changes periodically with time 
and does not spread. Figures 10b and 10c show such a slug at two different 
times. The initial condition was that seen in Fig. 10a (including a small 
initial random perturbation). The random initial condition is irrelevant in 
this case, since it damps instead of grows as in the chaotic case. This slug 

822/54/5-6-24 
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Fig. 10. A slug in Eq. (10) which does not spread and changes periodically with time. The 
parameter values are the same as those in Fig, 8, except for b r = 1. 

oscillates periodically and will remain localized indefinitely with time. This 
is similar to the slugs which change periodically and do not spread with 
time that can occur in binary fluid mixtures (see Fig. 11). u~ 

The fact that the chaotic slug spread with time, whereas the periodic 
slug does not spread with time, may be understood in the following 
fashion. The boundary between the slug and the laminar region is not 
sharp but gradual, with the wave damping exponentially with distance 
from the edge of the slug. In the chaotic case the amplitude of the wave 
adjacent to the slug changes in a random fashion with time. Occasionally 
the amplitude of the wave adjacent to the slug will become sufficiently large 
so that it will grow (i.e., "pop" into the chaotic basin of attraction), 
producing an additional contribution to the slug. This random "popping" 
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Fig. 11. A periodic nonspreading slug in binary fluid convection. Reprinted from ref. 25. 

will cause the slug to spread randomly with time. In the periodic case the 
wave adjacent to the slug oscillates periodically with time and therefore 
never changes amplitude and is never large enough to grow. Therefore, in 
this case the slug will not spread. The spreading mechanism for the chaotic 
slug discussed above is similar to the turbulent from propagation 
mechanism in a string of oscillators in which turbulent oscillators con- 
taminate nearby quiescent oscillators. (26) 

6. C O N V E C T I V E  S E C O N D A R Y  INSTABIL IT IES 

As noted in Section 3, the regular portion of the structure broke up as 
a result of a convective secondary instability. The convective nature of this 
secondary instability can be seen most clearly by perturbing the left boun- 
dary sinusoidally instead of with noise. Figure 12b shows the result. We see 
that the structure is sinusoidal. Since it is convectively unstable, we know 
that external noise will play an important role in the dynamics. Figure 12a 
shows the resulting structure for large times with a small amount of noise 
introduced at the left boundary in addition to the sinusoidal perturbation. 
The noise is amplified as it is convected to the right, causing the structure 
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Fig. 12. Plot of 0r as a function of x. The left boundary is perturbed sinusoidally, r t) = 
Ae -i~'', with a frequency of e)= 1.111 and an amplitude of A = 0.01. The parameter values are 
the same as those in Fig. 2. (a) A small amount of noise (noise level r = 10 - 3 )  is added at the 
left boundary in addition to the sinusoidal perturbation. (b) No noise is added. With noise 
the structure breaks up as a result of a secondary convective instability. Without noise the 
structure is periodic. 

to b reak  up  at some spat ia l  point .  W i t h o u t  noise the s t ructure  is per iodic;  
with noise the s t ructure  is i r regular  for sufficiently large x (and in fact can 
be shown to be convect ively chaotic) .  

I t  is also poss ible  to have an abso lu te  p r imary  ins tabi l i ty  and  a con- 
vective secondary  instabil i ty.  F igure  13c shows a plot  of r  as a funct ion of 
x in the absence of  noise under  condi t ions  when the state r  is 
abso lu te ly  unstable.  W e  see tha t  the s t ructure  is self-sustained since the 
state ~ - - 0  is abso lu te ly  unstable .  If  we now add  noise at  the left b o u n d a r y  
(see Figs. 13a and  13b), we see tha t  the s t ructure  breaks  up as a result  of a 
convect ive secondary  ins tabi l i ty  (the larger  the noise level, the closer to the 
left b o u n d a r y  the po in t  of b reakup) .  This shows tha t  external  noise can 
also p lay  an i m p o r t a n t  role in systems for which the s t a t ionary  state is 
absolu te ly  unstable ,  bu t  for which a secondary  state is convect ively 
unstable.  
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Fig. 13. Plot of er as a function of x under conditions when the state ~, =0  is absolutely 
unstable. The parameter values are the same as those of Fig. 2, except that vg =4. (a) Noise 
level at the left boundary is r =  10 -4. (b)Noise level at the left boundary is r =  10 -6. 

(c) Noise level is r = 0. With noise the structure breaks up as a result of a secondary convec- 
tive instability. Without noise the structure is periodic. In contrast to Fig. 12, for which the 
state ~, = 0 is convectively unstable, the structure in Fig. 13 is self-sustained. 

7. S P A T I A L L Y  V A R Y I N G  I N S T A B I L I T I E S  A N D  
P E R I O D I C  B O U N D A R Y  C O N D I T I O N S  

I t  is also poss ib le  for low-level  ex te rna l  no ise  to p lay  a n  i m p o r t a n t  role 
in sys tems wi th  pe r iod ic  b o u n d a r y  c o n d i t i o n s  if the sys tem is abso lu t e ly  
s table  in  one  r eg ion  a n d  convec t ive ly  u n s t a b l e  in  a n o t h e r  region,  m 

F igu re  14 shows resul ts  for Eq. (1) wi th  a n d  w i thou t  noise,  where  a is 
pos i t ive  in  the left p o r t i o n  of the sys tem a n d  nega t ive  in  the r ight  p o r t i o n  of  
the system. W i t h o u t  noise,  a s ignal  which  is ampl i f ied  in the u n s t a b l e  
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Fig. 14. Plot of 0r as a function of x under periodic boundary conditions. The state 0 = 0 is 
convectively unstable for 0 < x < x l  and absolutely stable for x 1 < x  < 300. The parameter 
values are the same as those of Fig. 2, except that a = - 2  for xl < x < 300. Noise of level 
r = 10 -6 is introduced at the left boundary in panels a, c, and e. The noise is removed in 
panels b, d, and f. (a, b) x I = 120; (c, d) xl = 180; (e, f) xl = 240. This demonstrates that low- 
level external noise can also play an important role in the dynamics of systems with periodic 
boundary conditions. 
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Fig. 14 (continued) 

region is damped in the stable region and then fed back to the unstable 
region--since the boundary conditions are periodic--where it is again 
amplified (see Figs. 14b, 14d, and 14f). In Fig. 14b the signal does not 
become large enough to be seen before it is damped. In Fig. 14d the signal 
at the left boundary will be periodic, since the structure is periodic. In 
Fig. 14f the signal at the left boundary is random in nature since the right 
of the structure is chaotic. In this case there is random spatiotemporal 
intermittency similar to the noise-driven case in Section 3. If external noise 
is added which is larger than the signal at the left boundary, the noise will 
then play an important role in the dynamics, the behavior being similar to 
the noise-driven case in Section 3 (compare Figs. 14a, 14c, and 14e with 
Figs. 14b, 14d, and 14f). 

8. C O U P L E D  G I N Z B U R G - L A N D A U  E Q U A T I O N  

In some systems, such as binary fluid convection--which consists of 
two miscible fluids, such as water and alcohol, with a vertical temperature 
gradient--the system can be reduced to the two coupled Ginzburg-Landau 
equations ('5) 

~t =a4"-~-~x +b -e  1~'12 ~1-d1~212~' (17) 



1484 Deissler 

and 

0~2 , ~b2 b ~2t~2-cl~212~2-d[~t12~2 (18) 63 t = at//2 + Vg ~ n t- (~x2 

These equations were studied in ref. 10. Because the group velocities 
are opposite in sign, these equations exhibit counterpropagating non- 
linear waves similar to those observed in binary fluid convection 
experiments. (27-29) Because of the nonlinear cross-coupling, the counter- 
propagating waves will interact and a large number of qualitatively new 
phenomena occur. For details the reader is referred to ref. 10. However, 
here I just note that, whereas the linear growth rate coefficient for a single 
Ginzburg-Landau equation [Eq. (1)] is at, the effective linear growth rate 
coefficients for Eqs.(17) and (18) are y l = a r - d r I ~ / 2 [  2 and 72= 
ar 7 dr I tPll 2, respectively. Therefore, if dr is positive, the cross-coupling will 
have a stabilizing effect; if dr is negative, the cross-coupling will have a 
destabilizing effect. The cross-coupling can therefore cause a suppression or 
enhancement of the instability and can also cause a transition between dif- 
ferent stability regimes. For example, assume that d, < 0 and that initially 
~1 = 0 and IP2 = 0  and that this state is convectively unstable [i.e., 0 < a, < 
v2gbr/(4 [b]2); see Eq. (5)]. If noise is introduced at both boundaries, the 
noise will be selectively and spatially amplified as it is convected away from 
the boundaries, giving rise to counterpropagating waves. When the waves 
reach the opposite boundaries and assuming that dr is sufficiently negative, 
the effect of nonzero ~P2 and ~1 will be to increase the effective linear 
growth rate coefficients 71 and 72, respectively, so that the system becomes 
absolutely unstable [i.e., 71.2> vZbr/(4 Ibl 2) on the average]. 

The studies in ref. 10 did not include reflections. As noted in that 
paper, this can be realized in experiment by having soft boundaries. (3~ For 
example, the distance between the plates in a binary fluid experiment could 
be gradually changed near the boundaries to cause the waves to damp 
gradually and therefore eliminate reflections. Therefore, in such a system 
noise introduced near one of the boundaries should be able to produce a 
noise-sustained structure similar to that studied in refs. 1 and 2. Also, other 
types of behavior studied in ref. 10, such as transition between different 
stability regimes, should be able to be observed. 

In addition, quintic terms [as in Eq. (10)] can be added to Eqs. (17) 
and (18), and the system can exhibit counterpropagating slugs. (~~ If the 
cross-coupling is stabilizing, the slugs can partially annihilate upon interac- 
tion. As previously noted, Fig. 10 shows a slug in binary fluid convection. 
With the proper set of parameter values and initial conditions, it should be 
possible to produce counterpropagating slugs in binary fluid convection 
which will partially annihilate upon interaction, assuming a stabilizing 
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Fig. 15. The "football state" in binary fluid convection. Fluctuations near the left boundary 
are amplified as they are convected to the right, resulting in the observed structure. Reprinted 
from ref. 28. 

interaction. Also, as noted in ref. 10, the intermittent behavior observed in 
liquid 3He-nile binary fluid experiments (31) may be the result of the 
formation of slugs. 

Figure 15 shows a state in binary fluid convection called the "football 
state. ''(27'28) As pointed out in ref. 10, this state can be understood in terms 
of convective instability and noise-sustained structure, (1'2) where fluc- 
tuations near the left boundary are selectively and spatially amplified as 
they are convected toward the right. The reason that the left portion of the 
cell is empty of waves is due to the fact that fluctuations near the left boun- 
dary need to be amplified above a certain threshold before they are large 
enough to be seen. 

9. OTHER S Y S T E M S  A N D  C O N C L U S I O N S  

As noted in the introduction, any system with nonzero group velocity 
will be convectively unstable slightly above criticality. Therefore, the 
behavior reviewed and studied in this paper should be very common in 
nature. A few physical systems which have already been mentioned are 
open flow systems such as pipe flow, channel flow, and flat-plate flow. In 
these systems external noise near the entrance to the pipe or channel, or 
near the leading edge of the plate, will be selectively and spatially 
amplified, resulting in spatially growing waves and random spatiotemporal 
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Fig. 16. Side branching in a dendrite of NH4Br. External noise near the tip of the dendrite is 
selectively and spatially amplified as it is convected away from the tip along the sides of the 
dendrite, resulting in the observed pattern. 

intermittency. Another system which has been mentioned is binary fluid 
convection. This system has the potential to produce all the types of 
behavior observed in a single Ginzburg-Landau equation and two coupled 
Ginzburg-Landau equations, particularly if soft boundaries are imposed to 
eliminate reflections. 

Another prototype equation--other than the Ginzburg-Landau 
equation--which has been recently studied is the Kuromato-Sivashinsky 
equation. (32) This equation is related to such systems as flow down an 
inclined plane, propagation of flame fronts, and autocatalytic chemical 
reactions. This equation was shown to be convectively unstable for a 
certain range of parameter values and to exhibit noise-sustained structure 
and spatiotemporal intermittency. 

Another system (mentioned in Section 3) for which it is now clear that 
external noise and the concept of convective instability, and therefore the 
pattern selection mechanism of refs. 1 and 2, are important is side 
branching in dendrites and fingers. (33-~6) Figure 16 shows a dendrite 
growing from a solution of NH4Br. Noise near the tip of the dendrite is 
selectively and spatially amplified as it is convected away from the tip 
along the sides of the dendrite. This selective and spatial amplification of 
noise serves as the pattern selection mechanism responsible for the 
wavelength of the side branches. Also, because of the random nature of 
the noise, the pattern which forms is not completely regular, but has 
irregularities. 

In the introduction it was mentioned that the behavior reviewed and 
studied in this paper is expected to be very common in nature. In closing I 
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mention one final system which is far afield from the systems previously 
mentioned. A simple model  wh ich  describes traffic flow is (37'38) 

dt 2 = X , _ l ( ~ ) - - - - x , ( t )  \ dt dt J 

where xn is the posit ion of  the n th  car and T is the time it takes the 
(n + 1)th car to react to changes in velocity of the n th  car. This equat ion 
can be shown, for the proper  parameter  values, to be convectively unstable. 
Therefore, fluctuations in the speed of  the lead car will be selectively and 
spatially amplified as they are convected down the string of cars, giving rise 
to waves in the speeds of  the following cars. It would be interesting to 
study this and similar equat ions in the light of the work reviewed and 
studied here. 
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